

Overview

- Volumetrics
- Specific Gravity
 - Different types
 - Uses
- Density
 - Why density?
- Unit Weight

What are Volumetrics?

- All matter has weight and occupies space
- Volumetrics are the relationships between weight and volume

 Asphalt and concrete mix designs are based on aggregate and mixture volumetrics

• Ratio of aggregate weight to the weight of an equal volume of water - Dimensionless number (no units attached) Specific Gravity = 2.70 means that the rock weighs 2.70 times an equal volume of water Water Water Stone

Uses of Specific Gravity

- Weight Volume Conversions
- Hot Mix Asphalt Designs (BOD)
- Portland Cement Concrete Designs (SSD)
- Identifying Deleterious Materials (e.g. shale or chert)
- Mining Operations / Planning
- · Quantity Calculations
- Void Calculations
- · Float / Separation Systems

Rock and Water

Specific Gravity

$$Specific Gravity = \frac{Weight}{Volume * (Unit Weight of Water)}$$

$$G = \frac{W}{V\gamma}$$

G=Specific Gravity W = Weight V=Volume γ = Unit Wt. Of Water

Unit Weight of Water

$$\gamma_w = \text{1.000 g/cm}^3$$

1.000 g/cm³

 $\gamma_{\rm w}=\text{62.4 lb/ft}^3$

Coarse Agg Specific Gravity

- AASHTO T85
 - Dry aggregate
 - Soak in water for 15-19 hours
 - Decant water
 - Use towel to get SSD condition
 - Determine mass of SSD aggregate in bucket
 - Determine mass of aggregate under water
 - Dry to constant mass
 - Determine oven dry mass

Soaking, Submerging Bucket, and Scale

Achieve SSD Condition

Calculate 3 Gravities From 1 Test

- A = mass oven dry
- B = mass SSD
- C = mass under water

Apparent =
$$G_{sa}$$
 = A / (A - C)

$$BOD = G_{sb} = A / (B - C)$$

$$SSD = G_{SSD} = B / (B - C)$$

Absorption % = [(B - A) / A] * 100

Fine Agg. Specific Gravity

- KM 64-605
 - Wash sample over a #200 sieve
 - Dry aggregate
 - Soak in water for 15 24 hours
 - Decant water over a #200 sieve
 - Spread out on plastic and dry to SSD with fan
 - Add 500 grams of SSD aggregate to pycnometer and 500 grams of SSD aggregate to a pan to be placed in an oven
 - Add water to 90 percent of pycnometer capacity and place on Gilson SS-28 vibrator for 4 minutes at high setting
 - Top off pycnometer with a bead of water and determine the mass of the pycnometer, aggregate and water
 - Determine mass of oven dry portion

Fine Agg. Specific Gravity

SSD Condition

Pycnometer & Vibrator

Calculate 3 Gravities From 1 Test

- A = mass oven dry
- B = mass of pycnometer filled with water
- C = mass pycnometer, SSD aggregate and water
- S = mass SSD aggregate

Apparent =
$$G_{sa}$$
 = A / (B + A - C)
BOD = G_{sb} = A / (B + S - C)
SSD = G_{SSD} = S / (B + S - C)

Absorption % = [(S - A) / A] * 100

Specific Gravity Review

- Commonly Used for Weight-Volume Conversions
- · Essential in HMA and PCC Mix Designs
- · 3 Gravities discussed
 - Apparent, BOD, SSD
 - 3 Gravities Calculated From 1 Test Procedure
- Apparent > SSD > BOD, except when Absorption=0 Absorption of 0 is very rare

Density

- Density of an Aggregate is Defined as Weight per Unit Volume
 - Pounds per Cubic Foot = pcf = lb / ft³
 - Grams per Cubic Centimeter = gm / cc = gm / cm³
 - Tons/yd³, N/m³, lb/yd³, lb/in³, oz/in³, gm/mm³

Volume

- Volume is the Space Occupied by a substance
- 3-Dimensional Calculation
 - length x width x depth
- Unit Volume is the Space where length=width=depth=1 Unit

Why Density?

- The purpose of Aggregate Base is to Provide Adequate Support
- Support is Measured by Strength and Stiffness
- Strength and Stiffness are Derived from Stone-to-Stone Contact in an Aggregate Support Layer
- Stone-to-Stone Contact Provides Internal Friction to Resist Particles Sliding Across Each Other
- Dry Density is a Measure of the Amount of Solid Particles (Weight) in a Unit Volume

Why Density?

- Higher Density <u>Indicates</u> more stone-to-stone contact...
 (except with high fines contents)
- More Stone-to-Stone Contact Means Greater Internal Friction...
- · Greater Internal Friction Increases the Stiffness and Strength...
- Increased Stiffness & Strength Provide Greater Structural Support in a Pavement System!!!

What Influences Density?

- Gradation
- Moisture
- Compactive Effort
- Particle Shape and Others...

Gradation Influence

- Too Fine
 - Coarse Particles Float in Fines
- Too Coarse
 - Excessive Voids & Lower Internal Friction
- · Just Right
 - Well-proportioned Size Distribution

Moisture Influences

- Too Wet
 - Base is "Soupy" & Water Pushes Particles Apart
- Too Dry
 - No Lubrication to Enhance Compaction
- Just Right
 - Particles Move Easier and Voids Replaced with Solid Particles

Compactive Effort Too Little Particles aren't Tightly Packed Too Much Breakdown Particles, Generate Fines, Coarse Float in Fines Matrix GOOD COMPACTION LEADS TO GOOD

Others...

• Particle Shape

PERFORMANCE

- Plasticity
- Construction Foundation

Unit Weight

- What is Unit Weight?
 - Density of material determined according to specified procedures
- Used for Concrete Mix Designs, Yields, Stockpile Inventories
- AASHTO T19
 - Dry Loose or Dry Rodded
 - 1/10-, 1/3-, 1/2-, 1-, 2 1/2-, or 3 1/2- ft³ Bucket

Volume = 1/3 ft³

Weight, lb = 34.0

Unit Weight = $\frac{34 \text{ lb}}{1/3 \text{ ft}^3}$ = 102.0 pcf

Voids Calculations

 Void space can be calculated from the unit weight value if the bulk specific gravity is known

$$\%Voids = \frac{(G_{sb} * \gamma_w) - \gamma_s}{G_{sb} * \gamma_w} * 100$$

 G_{sb} = BOD Gravity γ_w = Unit Weight of Water = 1 g/cm³ = 62.4 lb/ft³ γ_s = Unit Weight of Solid (stone)

Voids Calculations

$$\%Voids = \frac{(G_{sb} * \gamma_w) - \gamma_s}{G_{sb} * \gamma_w} * 100$$

 $\begin{aligned} G_{\text{sb}} &= 2.70 \\ \gamma_{\text{w}} &= \text{Unit Weight of Water} = 62.4 \text{ pcf} \\ \gamma_{\text{s}} &= \text{Unit Weight of Stone} = 102.0 \text{ pcf} \end{aligned}$

%
$$Voids = \frac{(2.70 \times 62.4) - 102.0}{2.70 \times 62.4} \times 100 = 39.5\%$$

Review - Density

- Higher Density <u>Indicates</u> more stone-to-stone contact...which leads to improved performance
- · Factors influencing density
 - Gradation
 - Moisture Content
 - Compactive Effort
 - Construction Foundation
 - Particle Shape
 - Plasticity

Review – Unit Weight

- · Unit weight is a density measurement
- Unit Weight used in concrete mix designs, yield calculations, stockpile inventories...
- Voids can be calculated knowing unit weight and specific gravity of a material

Summary

- Specific Gravity
 - Apparent, BOD, SSD
- Density
 - Factors influencing density

